

Metabolomics & Lipidomics October 15 2024

Serge Rezzi, PhD CEO Swiss Nutrition and Health foundation serge.rezzi@nutritionhealthfoundation.ch https://nutritionhealthfoundation.ch/ Tel. +41 21 65326 50 - Fax +41 21 653 26 52 Route de la Corniche 3B **CH-1066 EPALINGES** EPFL From molecules to health 2024

Metabol(n)omics – What's in name

- Metabolome: the entire set of metabolites in a biological cell, tissue, organ or organism, which are the end products of cellular processes
- Metabonomics: "the quantitative measurement of the dynamic multiparametric metabolic responses of multicellular systems to pathophysiological stimuli or genetic modification" Nicholson et al. Xenobiotica, 29:1181-1189, 1999
- Metabolomics: "measurement of metabolite concentrations and fluxes in cells, cell complexes and cytologically defined tissues".
- No real distinction on analytical workflows
- Both approaches used as a phenotypic module for system understanding (functional genomics and systems biology)
- Metabonomics extends system phenotyping from endobiotics to the all exposome including xenobiotics (drugs), nutrients (diet), microbiota (extended genome) and environmental factors.

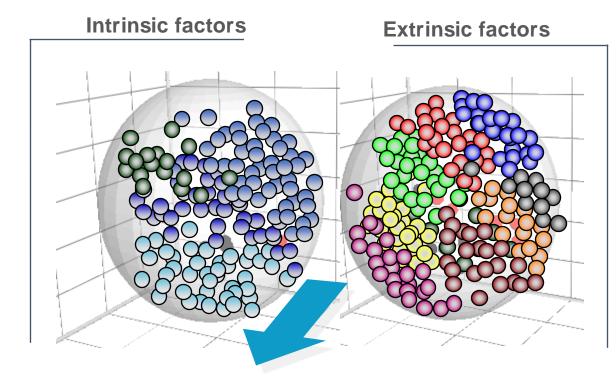
The Metabolome

Body composition

Tissue turnover

Resting metabolic

rate


Age

Genotype

Health status

Reproductive status

Diurnal cycle

Diet

Drugs

Physical activity

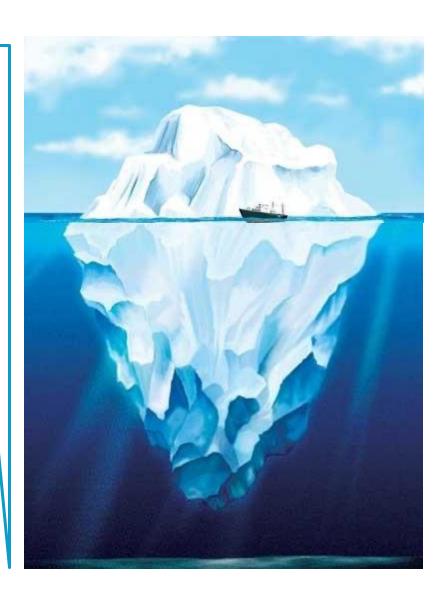
Microbiota

Stress

Lifestyle

The Metabolome

The sum of all endogenous and exogenous metabolites



Analytical strategies for metabolic profiling

The Metabolome

Holistic

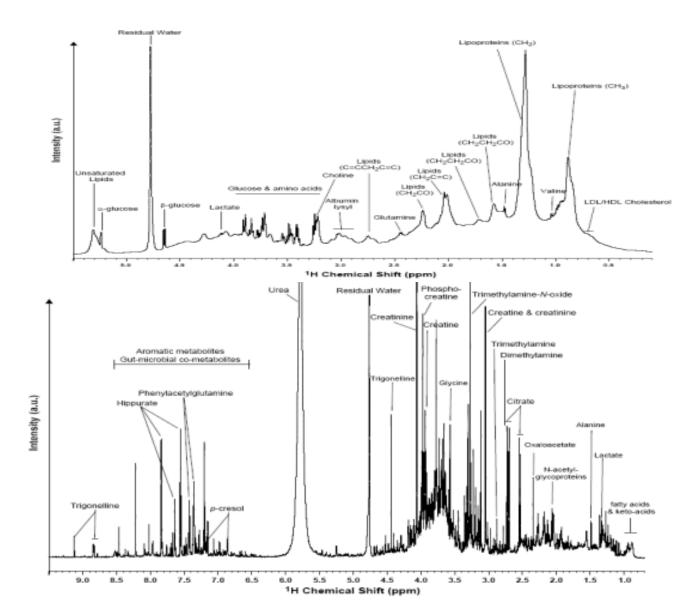
Fargeted

System level

Holistic profile

- Homeostatic status
- •Surrogate biomarkers

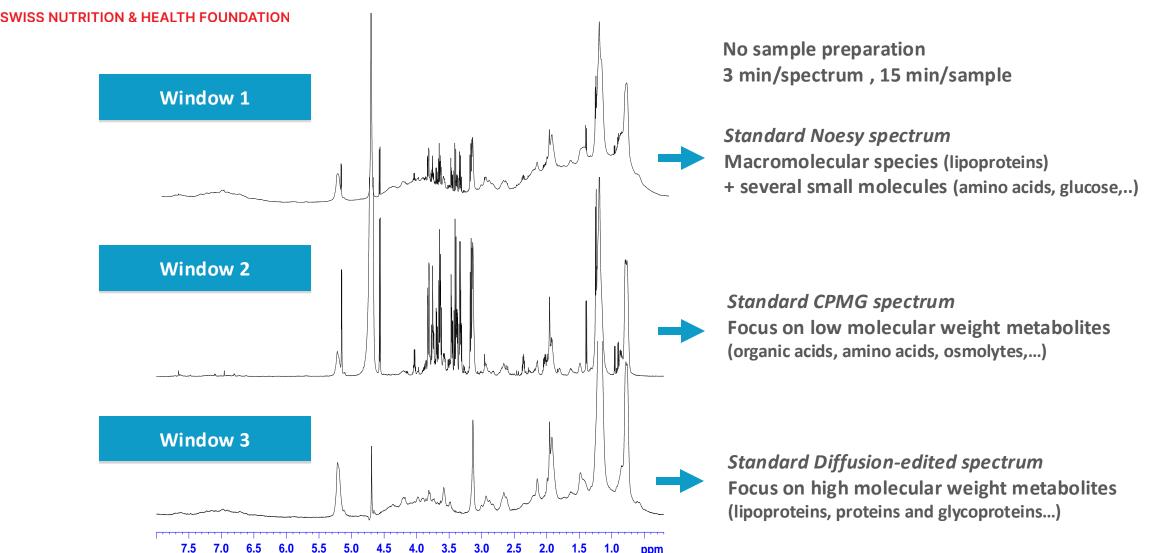
Semi-holistic & targeted quantitative profiles
• Lipidomics


Sub-pathway level Tracer analysis Fluxes

Holistic metabolic profiling by ¹H Nuclear Magnetic Resonance (¹H NMR) spectroscopy

Key features

- high throughput
- highly robust
- provides information on:
 - Central energy metabolism
 - Amino acids
 - Lipids (lipoproteins)
 - Glucose
 - Microbial metabolites
- Efficient for hypothesis generation and functional genomics (GWAS)
- Provides guidance for subsequent targeted analyses



Resolution gain by increasing frequency of NMR magnets (¹H NMR of bovine serum)

¹H NMR-based metabolic profiling of blood plasma 1 sample for multiple "metabolic windows

¹H NMR-based metabolic profiling of urine

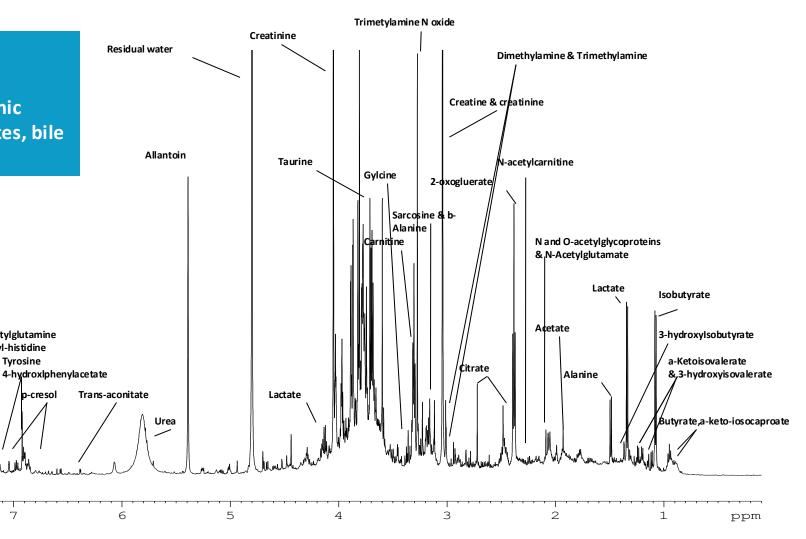
Direct insight into:

Host and gut microbial metabolism (Amino acids, short-chain fatty acids, organic acids, phenols, indols, xenobiotics, osmolytes, bile acids,...)

Histidine

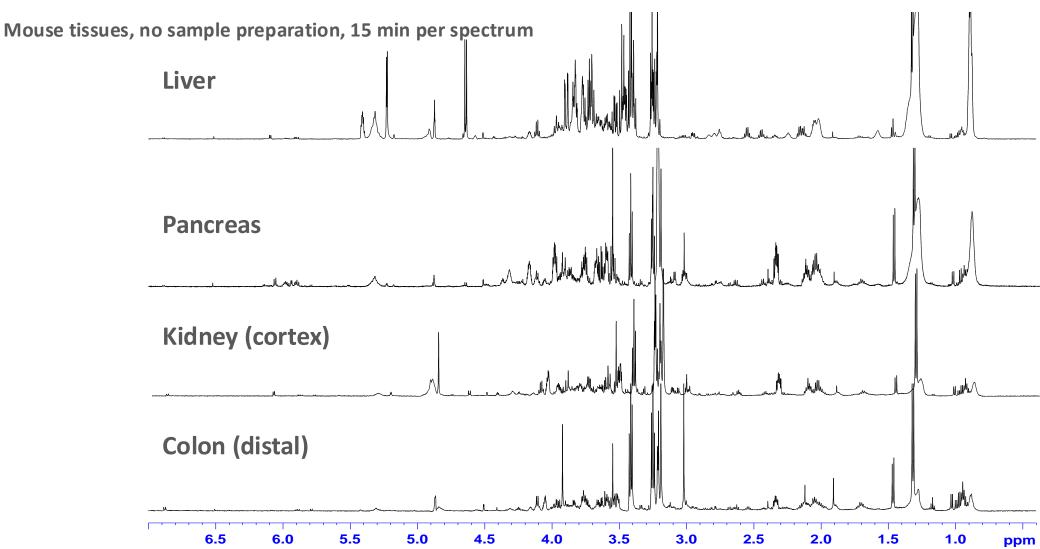
Hippurate

8


1-methylnicotinate

Formate

Trigonelline


Phenylacetylglutamine

& 1-methyl-histidine Tyrosine

¹H NMR-based metabolic profiling of intact tissues High resolution magic angle spinning NMR

Mass spectrometry based metabolic profiling

Untargeted approach

Used for biomarker discovery (scope: cover the broader possible range of metabolites)
Techniques:

- High resolution mass spectrometry (ex: Time Of Flight, Orbitrap technologies)
- Different chromatographic hyphenation techniques available
- Limitations: relative quantitation, can generate artefactual signals (ion adducts)

Other approaches

Stable-isotope assisted metabolomics (metabolic fluxes)
Molecular imaging techniques

Targeted approach

Used when *a priori* metabolic knowledge is available on the investigated question (scope: obtain quantitative information) Techniques:

- Tandem mass spectrometry
- Different chromatographic hyphenation techniques available
- Limitations: reduced panel of analytes or necessity to cumulate several analytical panels thus several analytical methods, sample preparation needs to be optimized for specific analyses

The metabol(n)omics data work flow A multidisciplinary approach, from information to knowledge

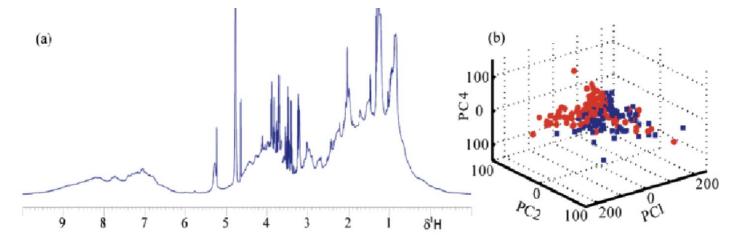
Data acquisition

- ✓ Metabolic profiling using analytical chemistry techniques
- ✓ Signal processing steps to generate metabolic readouts
- ✓ Metabolite identification/ quantitation
- ✓ Main techniques: Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS)

Data mining

- ✓ Chemometrics: pattern recognition techniques (unsupervised, supervised)
- ✓ Identification/quantitation of metabolites of interest (differentiating groups)

Data interpretation


- ✓ Pathway analysis
- ✓ Data integration
- ✓ Biological interpretation (biomarkers, mechanism of action...)

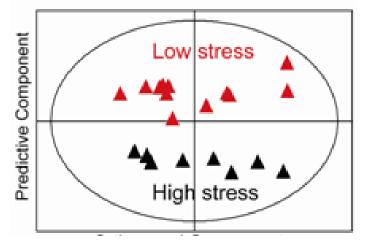
Examples of commonly used pattern recognition techniques

Unsupervised techniques

- No a priori knowledge (e.g. unknown sample class/assignment)
- Aim: to visualize the overall structure of the data (variance)
- Principal Component Analysis (PCA)
 - Reduces the multidimensional data space into its low-dimensional representation
 - Projects the data variance on space defines by principal components
 - Each PC (PC1, PC2...) express maximum amount of variance, which was not accounted for by previous PC
 - Allows to identify metabolic signals explaining the observed metabolic variance
- Others: robust PCA, Hierarchical cluster analysis, K-means

From: Rezzi, S., et al. (2007). Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals.

Journal of proteome research, 6 11, 4469-77.

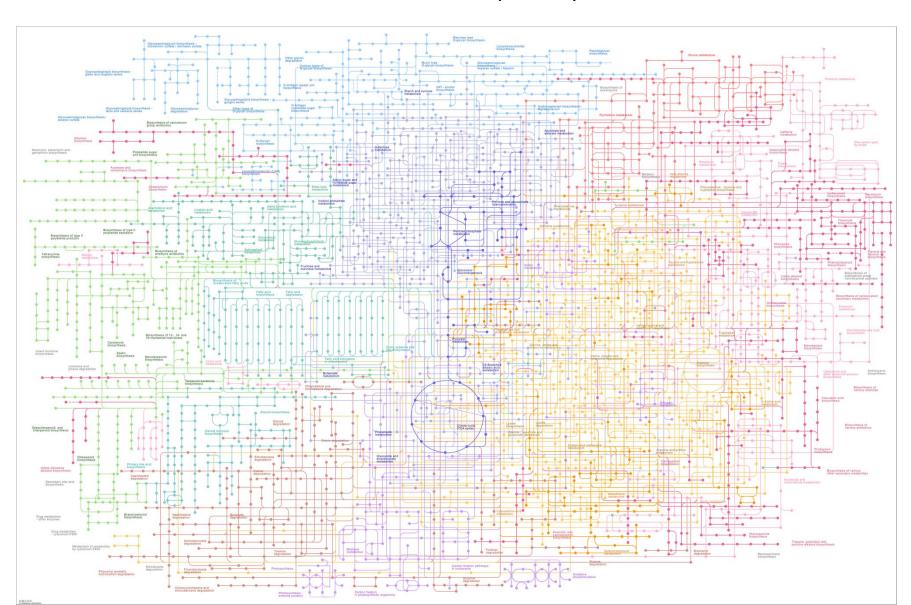


Examples of commonly used pattern recognition techniques

Supervised techniques

- a priori knowledge (e.g. known sample class/assignment)
- Aims: classification of samples or prediction of specific parameters (continuous variable)
- Regression techniques (partial least square), partial Least Squares Discriminant Analysis
 - Reduces the multidimensional data space into its low-dimensional representation
 - Projects the data on space defines by latent variables (e,g, linear combinations of original variables or metabolic signals)
 - Allows to identify metabolic signals showing correlations and explaining classification or prediction
- Others: Orthogonal PLS-DA, linear discriminant analysis
- Risk to build false classification models due to high dimensionality of the data→model validation is needed

From: Martin FP., S. Rezzi et al. J Proteome Res. 2009


Dec;8(12):5568-79.

Data analysis and interpretation

Need to know how to read and understand metabolic pathways

Source https://www.genome.jp/pa thway/map01100+M00009

Data analysis and interpretation

SWISS NUTRITION & HEALTH FOUNDATION

·					
Tool	MetaboAnalyst	MeltDB	metaP-Server	SIMCA-P	SAS
Software type	Web-based	Web-based	Web-based	Stand-alone	Stand-alone
License	Free	Free (registry required)	Free	Commercial	Commercial
Data input	Data table, NMR, MS, GC-MS data, compound/peak lists	Raw mass spectral files	Data table	Data table	Data table
Graphical interface	+++	++	++	+++	+/-
Normalization	+++	+	+	++	++
Univariate analysis	+++	++	+++		+++
Multivariate analysis	+++	++	+	+++	+++
Clustering	+++	++			++
Classification	++				++
Enrichment analysis	++				
Pathway analysis	+++		+		
Pathway visualization	++				
Integration with other omics data		+			
Peak annotation	++	+++			

The level of support for a particular feature is rated by the number of '+', with '+++' as the highest.

Example of results from metabolite set enrichment analysis

1	Metabolite Set	Total	Hit	Statistic	Expected	P Value	Holm P	FDR	Detail
	PYRIMIDINE METABOLISM	36	3	5.9815	1.3158	0.0026037	0.11977	0.065958	المد
	BETA-ALANINE METABOLISM	13	2	7.5707	1.3158	0.0028677	0.12905	0.065958	المدا
	KETONE BODY METABOLISM	10	1	9.089	1.3158	0.0077101	0.33925	0.10832	d-th
	PURINE METABOLISM	45	2	5.9459	1.3158	0.0094194	0.40503	0.10832	1.4
	GLUTANATE METABOLISM	18	3	4.2634	1.3158	0.019852	0.8338	0.18264	1.6
	VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	36	3	3.6972	1.3158	0.060012	1.0	0.4159	1.4
	INOSITOL METABOLISM	19	1	4.5238	1.3158	0.063289	1.0	0.4159	1.4
	MITOCHONDRIAL ELECTRON TRANSPORT CHAIN	15	2	3.3111	1.3158	0.082012	1.0	0.42415	1.6
	PROTEIN BIOSYNTHESIS	19	10	2.2262	1.3158	0.093859	1.0	0.42415	1.4
	BETAINE METABOLISM	10	2	2.9882	1 3158	Hetabolite Set Plot The barn indicate correlation and diamond deviation of the			ripes signify me
	CITRIC ACID CYCLE	23	6	2.4262	1.3158	to 🔳		szoc elt phocolype -	particul marketer
	PANTOTHENATE AND COA BIOSYNTHESIS	10	1	3.1919	1.3158	4-			
	GALACTOSE METABOLISM	25	3	2.4909	1.3158		ı		
	PROPANOATE METABOLISM	18	1	2.9087	1.3158	1,			
	TYROSINE METABOLISM	38	3	2.3462	1.3158	2-			_
	PHOSPHOLIPID BIOSYNTHESIS	19	1	2.7762	1.3158				-
	UREA CYCLE	20	4	2.1039	1.3158	ž.	111	1111	į
	METHIONINE METABOLISM	24	4	1.8857	1 3158	PROTEIN RECEIVED S L-GLOSTIC SCIT L-Turnish Asparagion: L-Tankaston	u Lifemoleanine Lik	grow Lifetine Lifetine	ment i-

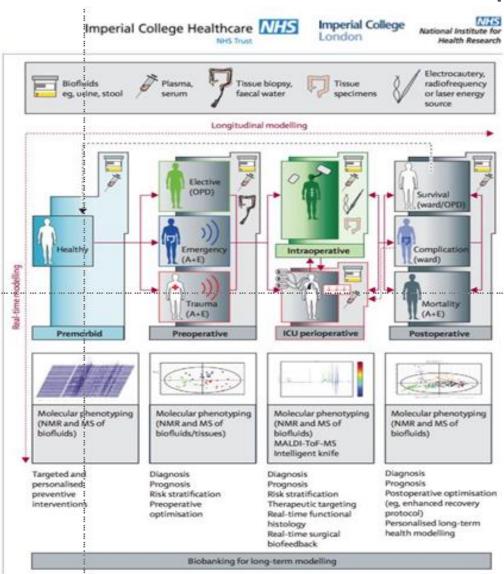
^{*} from: J. Xia & D.S. Wishart, Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst, Nature protocols, 6, 2011, 743

Metabolomics application domains

- Pharmaceutical research (drug toxicity, efficacy, drug response prediction)
- Environment research (physical & chemical exposures, biofuel production)
- Molecular epidemiology (biomarker identification & validation, genemetabolome associations, developmental biology)
- Nutrition (Nutritional Metabolomics)
 - Dietary pattern footprints
 - Dietary intake biomarkers
 - Gut-host metabolic cross talk
 - Metabolic effects of nutritional intervention

SWISS NUTRITI

Phenotyping stratification for preventive medicine and medical care: Phenome Center concept


Imperial Comprehensive Biomedical Research Centre

Translating research into patient benefits

'Phenotyping The Patient Journey'

THE LANCET

Kinross, J. Holmes, E. Darzi, A. and Nicholson JK: Metabolic Monitoring of Surgical Patients. (May 28th 2011, Vol 377 1817-1819)

Pharmaco-Metabonomics to enable prognostic biomarker discovery for patient stratification

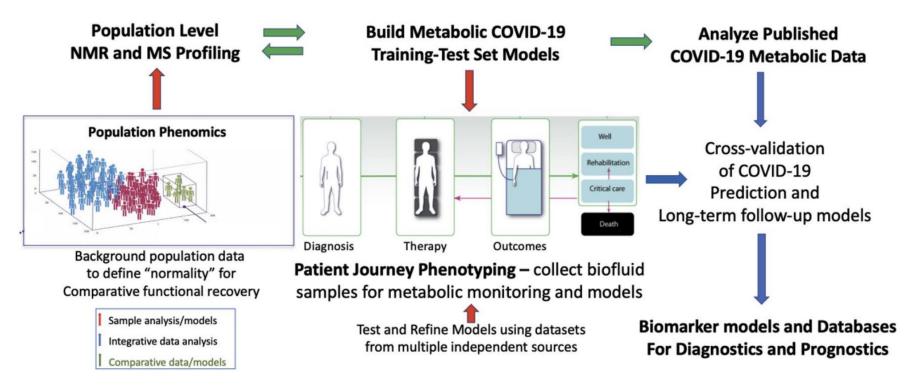
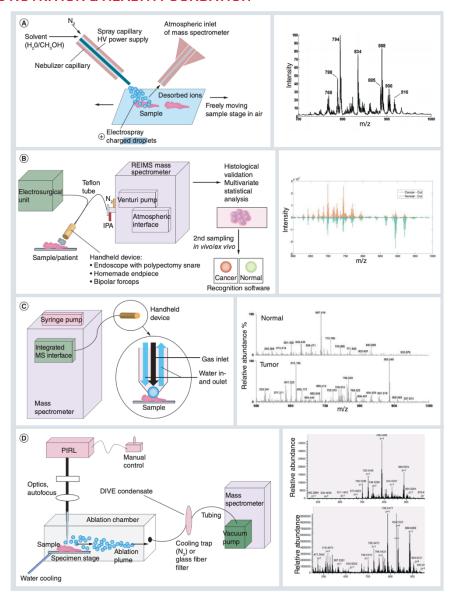


Fig. 1 A framework for understanding the natural history of an emergent zoonotic disease using metabotyping: schematic illustration of the collective COVID-19 patient journey from health to disease using a metabolic systems framework to assess disease progression and recovery in relation to associated studies that enable model cross-val-


idation through published literature and sequential analysis of multiple disease cohort samples. The population phenomics box illustrates the collection of different metabolic signatures from population subgroups some of which may have different disease risks

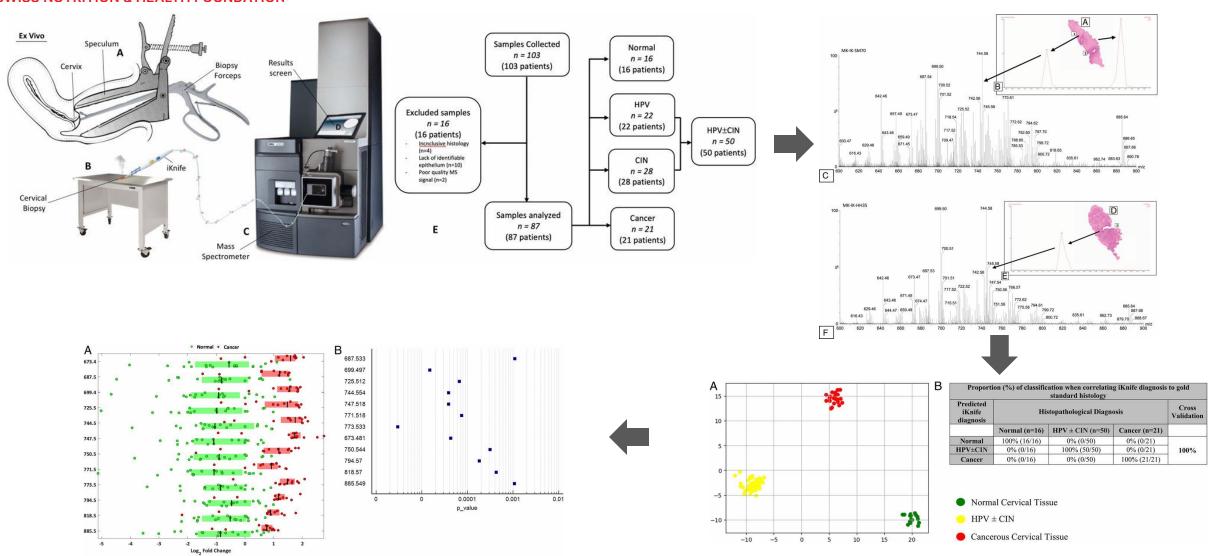
Source: Nicholson JK. Molecular Phenomic Approaches to Deconvolving the Systemic Effects of SARS-CoV-2 Infection and Post-acute COVID-19 Syndrome. Phenomics, 2021 Jul 22:1-8.

Mass spectrometry-based intraoperative tumor diagnostics

SWISS NUTRITION & HEALTH FOUNDATION

Schematic figure of mass spectrometry based methods for intraoperative cancer diagnosis (left) with corresponding examples of mass spectra (right)

iKnife. Rapid evaporative mass spectrometry coupled to eligible surgical devices


MasSpec pen.

Picosecond infrared laser

The intelligent knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease

SWISS NUTRITION & HEALTH FOUNDATION

Tzafetas M et al. Proc Natl Acad Sci U S A. 2020 31;117(13):7338-7346

Advantages and limitations of NMR and MS 1/3

	NMR	Mass Spectrometry
Reproducibility	High reproducibility is one of the fundamental advantages of NMR spectroscopy.	Compared to NMR spectroscopy, MS data are less reproducible.
Sensitivity	Intrinsically low but can be improved with multiple scans (time), higher magnet field strength, cryo-cooled and microprobes, and hyperpolarization methods.	High sensitivity is a major advantage of MS; metabolites with nanomolar concentrations can be readily detected
Selectivity	NMR is generally used for nonselective analysis. Peak overlaps from multiple detected metabolites pose major challenges.	MS is selective. However, in combination with chromatography (such as liquid and gas phase separation), it is a superior tool for targeted analysis.
Sample measurement	Enables relatively fast measurement using 1D ¹ H-NMR spectroscopy, where all metabolites at a detectable concentration level can be observed in one measurement.	Different ionization methods are required to maximize the number of detected metabolites.

Emwas et al. Metabolites 2019, 9, 123

Advantages and limitations of NMR and MS 2/3

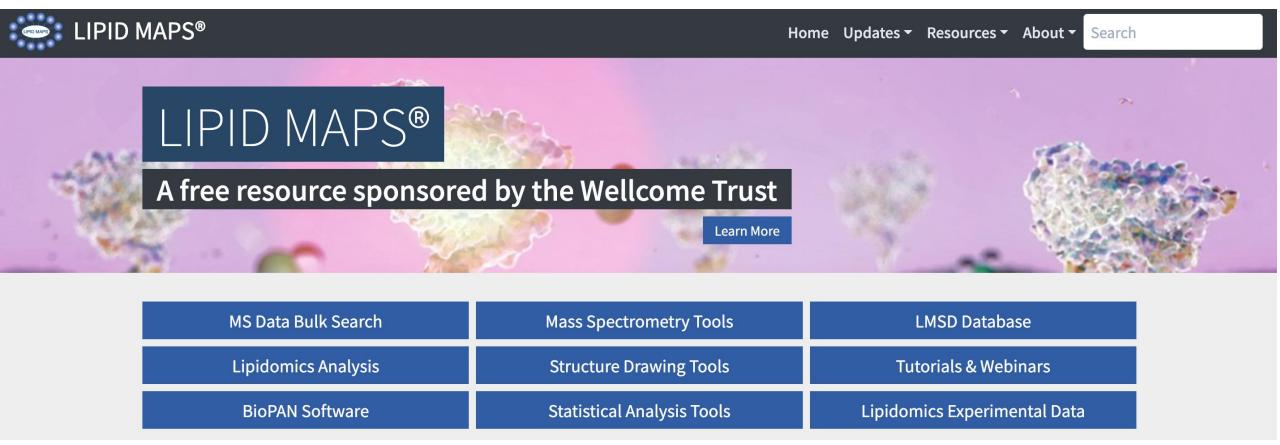
	NMR	Mass Spectrometry
Sample preparation	Involves minimal sample preparation, usually transferring the sample to an NMR tube and adding deuterated locking solvent. Can be automated.	More demanding; requires chromatography; requires sample derivatization for gas chromatography (GC)-MS.
Sample recovery	NMR is nondestructive and, hence, several analyses can be carried out on the same sample. Additionally, the sample can be recovered and stored for a long time.	MS is destructive technique; therefore, the sample cannot be recovered. However, it needs only a small amount of sample.
Quantitative analysis	NMR is inherently quantitative as the signal intensity is directly proportional to the metabolite concentrations and number of nuclei in the molecule.	The intensity of the MS line is often not correlated with metabolite concentrations as the ionization efficiency is also a determining factor.

Advantages and limitations of NMR and MS 3/3

	NMR	Mass Spectrometry
Fluxomics Analysis	NMR permits both in vitro and in vivo metabolic flux analyses. Its inherently quantitative nature also enables precise quantification of precursors and products. Mapping of stable isotope locations and incorporating points in molecules is very easy via NMR.	MS can be used for fluxomics analysis; however, the destructive nature of MS-based methods means it is somewhat more limited than NMR-based fluxomics. In vivo fluxomics is no possible with MS, and isotope mapping is more difficult.
Tissue samples	Using high-resolution magic-angle sample spinning (HRMAS) NMR, it is possible to detect metabolites in tissue samples.	Although some MALDI-TOF approaches can be used to detect metabolites in tissue samples, these approaches are still far from being routine.
Number of detectable metabolites	Depending on spectral resolution, usually less than 200 metabolites can be unambiguously detected and identified in one measurement.	Using different MS techniques, it possible to detect thousands of different metabolites and identifes veral hundred.
Targeted analysis	NMR spectroscopy can be used for both targeted and untargeted analyses, but it is not commonly used for targeted analyses.	Both GC-MS and liquid chromatography (LC)-MS are superior for targeted analyses
In vivo studies	Using magnetic resonance spectroscopy (MRS), in vivo investigation can be carried out most often using nuclei such as ¹ H and ³¹ P.	Although desorption electrospra- ionization (DESI) may be a usefu way to analyze tissue samples during surgery, MS is not used for in vivo metabolomics studies.

Emwas et al. Metabolites 2019, 9, 123

Lipidomics


The large-scale study of pathways and networks of cellular lipids in biological systems.

Lipidome: comprehensive set of lipids at different levels of the biological organization (cell, tissue, organism)

Subset of the "metabolome"

Lipid Maps A lipid specialized knowledge base

https://www.lipidmaps.org/

Lipid nomenclature

Lipids may be broadly defined as hydrophobic or amphiphilic small molecules that originate entirely or in part from two distinct types of biochemical subunits or "building blocks": ketoacyl and isoprene groups.

The lipid classification scheme is chemically based and driven by the distinct hydrophobic and hydrophilic elements that compose the lipid

Lipids may be divided into eight categories:

Fatty acyls	Saccharolipids
Glycerolipids	Polyketides
Glycerophospholipids	Sterol lipids
Sphingolipids	Prenol lipids

^{*} Fahy,E. et al, Journal of Lipid Research. 2005 Vol. 46, 839-862

Representative structures 1/2

(a) Fatty Acyls: hexadecanoic acid

(b) Glycerolipids: 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol

(c) Glycerophospholipids: 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine

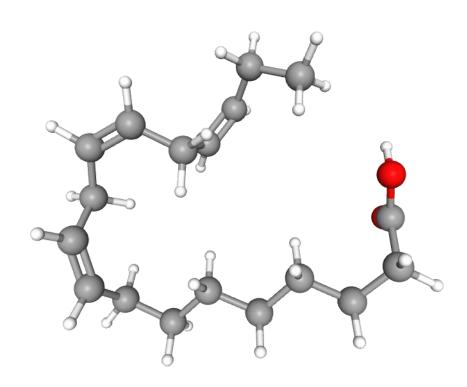
(d) Sphingolipids: N-(tetradecanoyl)-sphing-4-enine

Representative structures 2/2

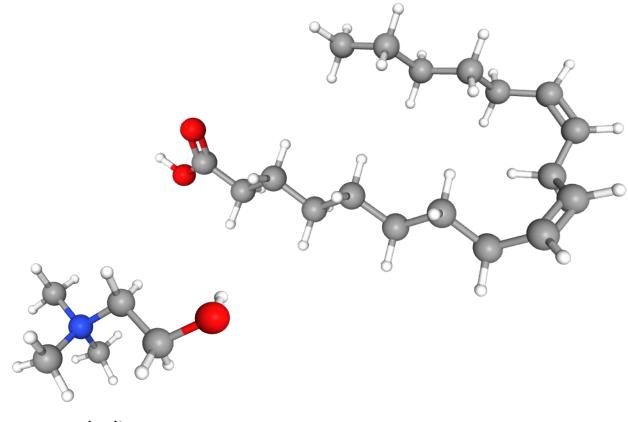
SWISS NUTRITION & HEALTH FOUNDATION

(e) Sterol Lipids: cholest-5-en-3β-ol

(g) Saccharolipids: UDP-3-O-(3R-hydroxy -tetradecanoyl)-αD-N-acetylglucosamine


(f) Prenol Lipids: 2E,6E-farnesol

(h) Polyketides: aflatoxin B1

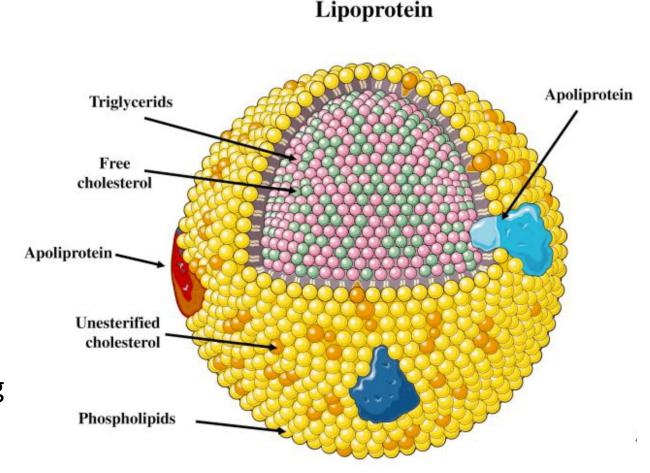


Essential lipids and lipid components for humans

alpha-linolenic acid (omega-3 fatty acid)

linoleic acid (omega-6 fatty acid)

choline



Transport of lipids via lipoproteins

Lipoproteins are complex particles that have a central hydrophobic core of non-polar lipids, primarily cholesterol esters and triglycerides.

The hydrophobic core is surrounded by a hydrophilic membrane consisting of phospholipids, free cholesterol, and apolipoproteins.

Lipoproteins are important for transporting cholesterol, triglycerides and liposoluble nutrients (vitamins) throughout the body.

Source: Lampsas S et al. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules. 2023; 28(3):969. https://doi.org/10.3390/molecules28030969

Transport of lipids via lipoproteins

0.95

Very low-density lipoproteins (VLDLs) (0.96-1.006 g/cm³)

- transport triglycerides from the liver to various tissues in the body for energy or storage.

Intermediate-density lipoproteins (IDLs) (1.007-1.019 g/cm³)

- transport a variety of fats and cholesterol left from VLDLs from the tissues to the liver

Low-density lipoproteins (LDLs) (1.020-1.062 g/cm³)

- transport cholesterol and other lipids from the liver to tissues.

High-density lipoproteins (HDLs) (1.063-1.210 g/cm³)

- transport cholesterol out of the bloodstream and into the liver, where it is either reused or removed from the body with bile.

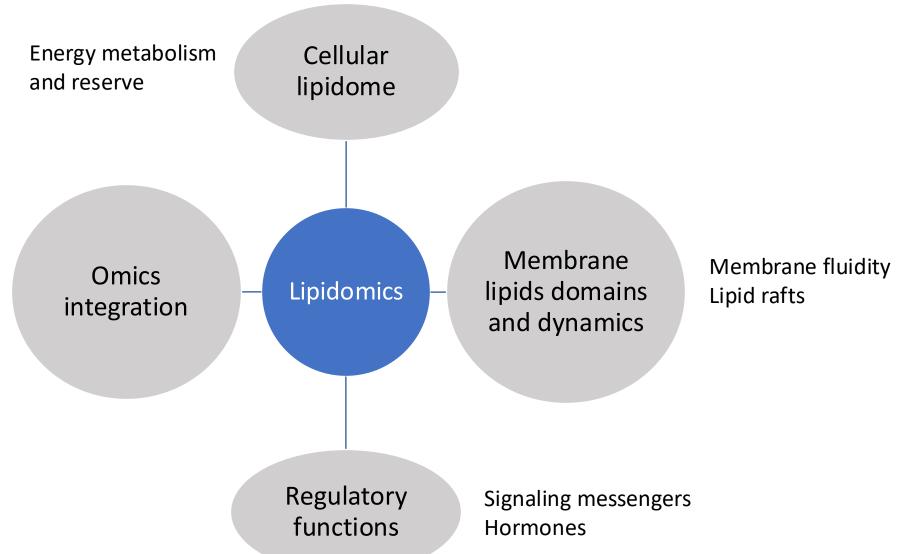
VLDL 1.006 Density, g/ml 85 % 0.95-1.006 IDL 80 % 1.006-1.019 1.02 15 % LDI 1.06 50 % 1.019-1.063 HDL % total lipid 1.10 1.063-1.21 % total protein 1.20 20 60 80 800

99 %

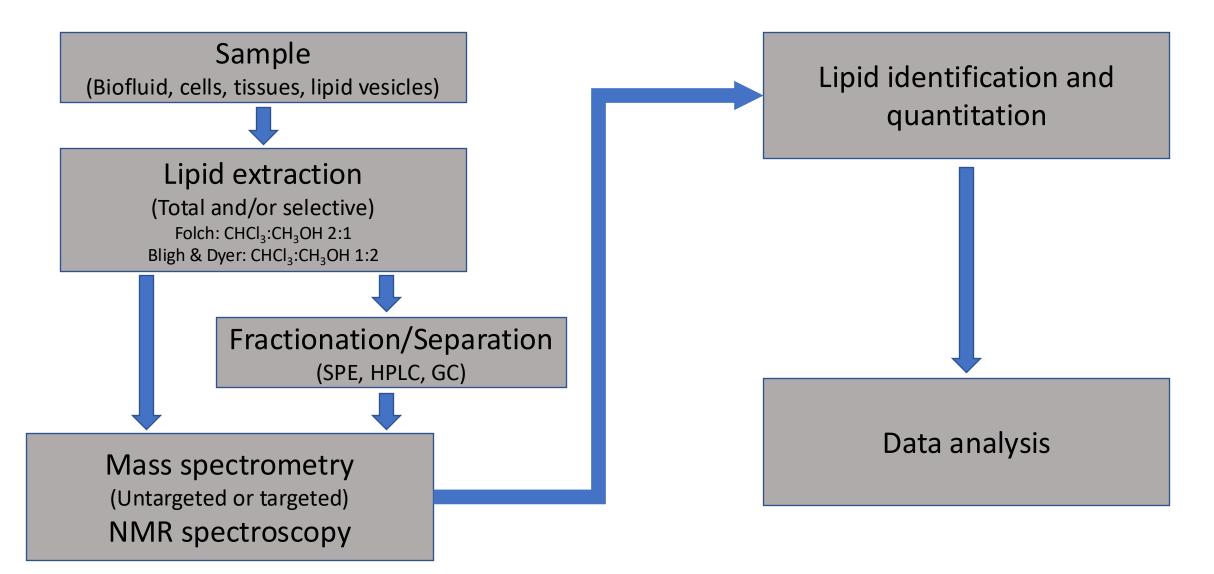
The classification of the major types of lipoproteins are based on their densities. Density range is shown as well as lipid (red) and protein (blue) content.

Particle diameter, nm

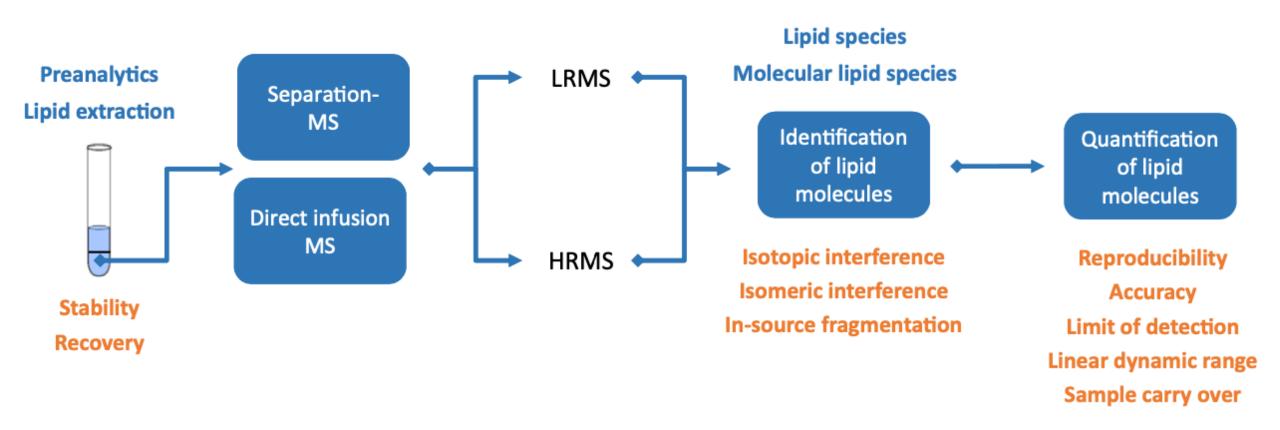
Source:


https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map%3A_Funda_mentals_of_General_Organic_and_Biological_Chemistry_%28McMurry_et_al.%29/24%3A_Lipid_Metabolism/24.02%3A_Lipoproteins_for_Lipid_Transport

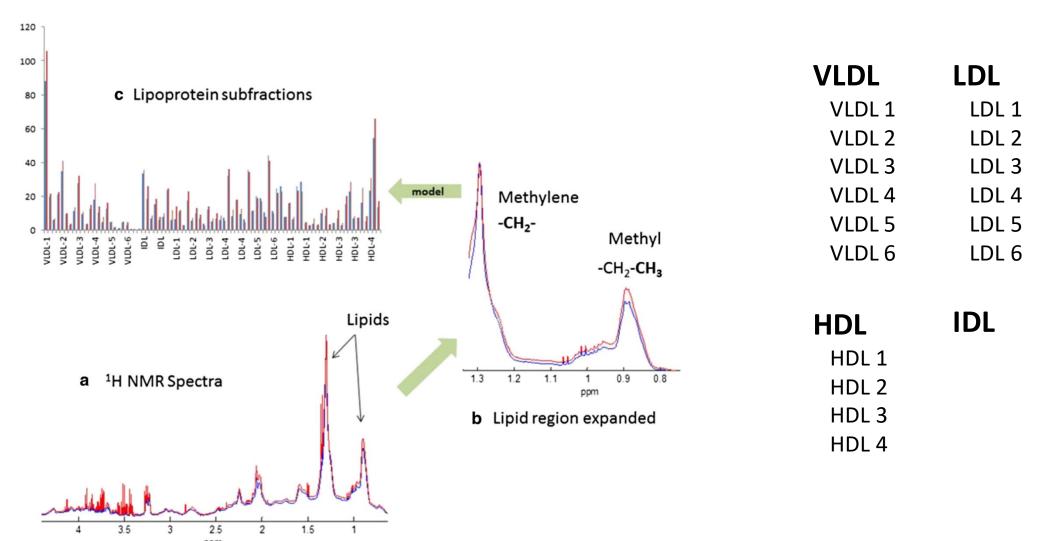
Molecular phenotyping


Biomarker discovery

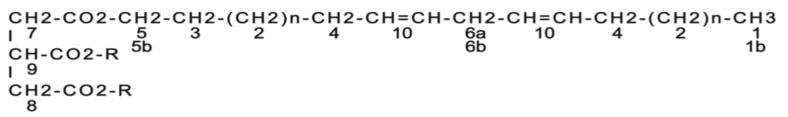
Lipidomics main application fields

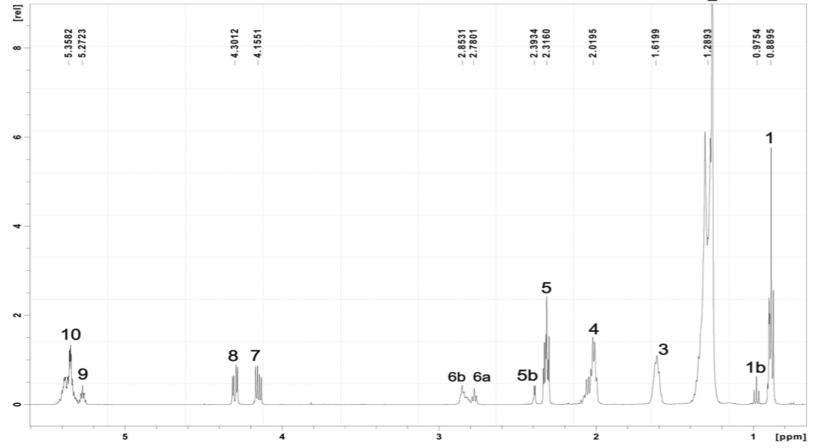


Lipidomics workflow for MS and NMR


Lipidomics workflow for MS

NMR-based lipidomics


Measure of lipoprotein fractions and subfractions



NMR-based lipidomics

Measure of lipid extracts

Lipid extract of rat adipose tissue:

- chloroform/methanol (2/1)

¹H NMR spectrum at 11.7 Tesla (500 MHz)

Proteome Res. 2016 Mar 4;15(3):868-78.